足球游戏_中国足彩网¥体育资讯$

韦达定理公式
来源:易贤网 阅读:1434 次 日期:2016-01-30 13:26:36
温馨提示:易贤网小编为您整理了“韦达定理公式”,方便广大网友查阅!

韦达定理公式:

一元二次方程ax^2+bx+c (a不为0)中

设两个根为x和y

则x+y=-b/a

xy=c/a

韦达定理在更高次方程中也是可以使用的。一般的,对一个n次方程∑AiX^i=0

它的根记作X1,X2…,Xn

我们有

∑Xi=(-1)^1*A(n-1)/A(n)

∑XiXj=(-1)^2*A(n-2)/A(n)

∏Xi=(-1)^n*A(0)/A(n)

其中∑是求和,∏是求积。

如果一元二次方程

在复数集中的根是,那么

法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。

由代数基本定理可推得:任何一元 n 次方程

在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:

其中是该方程的个根。两端比较系数即得韦达定理。

韦达定理在方程论中有着广泛的应用。

定理的证明

设<math>x_1</math>,<math>x_2</math>是一元二次方程<math>ax^2+bx+c=0</math>的两个解,且不妨令<math>x_1 \ge x_2</math>。根据求根公式,有

<math>x_1=\frac{-b + \sqrt {b^2-4ac}}</math>,<math>x_2=\frac{-b - \sqrt {b^2-4ac}}</math>

所以

<math>x_1+x_2=\frac{-b + \sqrt {b^2-4ac} + \left (-b \right) - \sqrt {b^2-4ac}} =-\frac</math>,

<math>x_1x_2=\frac{ \left (-b + \sqrt {b^2-4ac} \right) \left (-b - \sqrt {b^2-4ac} \right)}{\left (2a \right)^2} =\frac</math>

中国足彩网信息请查看高中
易贤网手机网站地址:韦达定理公式
由于各方面情况的不断调整与变化,易贤网提供的所有考试信息和咨询回复仅供参考,敬请考生以权威部门公布的正式信息和咨询为准!

2025国考·省考课程试听报名

  • 报班类型
  • 姓名
  • 手机号
  • 验证码
关于我们 | 联系我们 | 人才招聘 | 网站声明 | 网站帮助 | 非正式的简要咨询 | 简要咨询须知 | 加入群交流 | 手机站点 | 投诉建议
工业和信息化部备案号:滇ICP备2023014141号-1 足球游戏_中国足彩网¥体育资讯$ 滇公网安备53010202001879号 人力资源服务许可证:(云)人服证字(2023)第0102001523号
云南网警备案专用图标
联系电话:0871-65099533/13759567129 获取招聘考试信息及咨询关注公众号:hfpxwx
咨询QQ:526150442(9:00—18:00)版权所有:易贤网
云南网警报警专用图标